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On the Numerical Computation of Parabolic 
Problems for Preceding Times 

By B. L. Buzbee* and Alfred Carasso** 

Abstract. We develop and analyze a general procedure for computing selfadjoint parabolic 
problems backwards in time, given an a priori bound on the solutions. The method is 
applicable to mixed problems with variable coefficients which may depend on time. We 
obtain error bounds which are naturally related to certain convexity inequalities in parabolic 
equations. In the time-dependent case, our difference scheme discerns three classes of 
problems. In the most severe case, we recover a convexity result of Agmon and Nirenberg. 
We illustrate the method with a numerical experiment. 

1. Introduction. Beginning with Hadamard, who drew attention to such prob- 
lems, many analysts have been attracted to the study of improperly posed problems 
in mathematical physics. A recent survey by Payne in [22] lists over fifty references. 
Further references are to be found in [15], [16], [14], [3], [10], and [1]. The two best 
known examples of ill-posed problems are the Cauchy problem for Laplace's equation 
and the Cauchy problem for the backward heat equation. Some remarks concerning 
practical interest in such questions can be found in [7, p. 231], [15], [27] and [28]. 

From the viewpoint of numerical analysis, this ill-posedness manifests itself in the 
most serious way. We have discontinuous dependence on the data. Consequently 
[24, p. 59], every finite-difference scheme consistent with such a problem, and which 
is implemented as a marching process, is necessarily unstable. On the other hand, 
as was observed by John in [12] and Pucci in [23], continuous dependence can often 
be restored by requiring the solutions to satisfy a suitable constraint. Typically, 
one asks for nonnegative solutions or for solutions which satisfy an a priori bound, 
obtainable from physical considerations. The problem then is one of incorporating the 
constraint in the algorithm used for computing the solutions. One such successful 
method is the linear programming technique developed by Douglas in [9] and [10]. 
See also [4]. Computational experiments, using this method for the backward heat 
equation, have been described by Cannon in [3]. While quite good results are obtained 
in [3], it is not clear how one would extend this method to more general parabolic 
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mixed problems with time-dependent coefficients. In the above papers, essential use 
is made of the integral representation of the solutions in terms of the Green's function, 
and explicit knowledge of the latter seems to be necessary in order to perform the 
computations described in [3]. Another method is proposed by Douglas in [10] and 
Miller in [21], for problems where the solutions can be obtained by separation of 
variables. This method is based on expanding the given data in a truncated Fourier 
series, and requires knowledge of the eigenfunctions of the spatial operator. 

In the domain of "general" linear parabolic problems, an interesting idea is 
discussed by Lattes and Lions in their recent book [14] along with several numerical 
experiments. This is the so-called "quasi-reversibility" or Q.R. method. Applied to 
the backward heat equation, this method consists in singularly perturbing the spatial 
operator by the addition of a higher-order term. The sign of the extra term is chosen 
so that the perturbed problem is well posed in the direction of decreasing time. 
Integrating backwards from the terminal data u(x, T), one obtains an "initial-function" 
UE(x, 0). This function does not converge as e -- 0, as pointed out by the authors. It 
is one of infinitely many possible "initial functions". However, if it is used as initial 
data in the unperturbed forward problem, the corresponding solution VE(X, t) has 
the property that, at time T, v,(x, T) - > u(x, T) as E -O 0. Again, v,(x, t) does not 
converge if t < T. As the authors make clear, their aim is to solve a "control problem" 
associated with parabolic equations rather than approximate the solutions of the 
backward problem. 

In this paper, we develop a finite-difference scheme for computing the solutions 
of linear selfadjoint parabolic problems backwards in time, given an a priori bound M 
on the solutions, and given the terminal data to a known accuracy 6 in the L2 norm. 
We make no hypotheses regarding the "power spectrum" of either the terminal data 
or its error component. (See [28], [29].) Moreover, explicit knowledge of the analytic 
solution operator is not required. The scheme is applicable to problems with variable 
coefficients depending on time and is implemented as a "jury" procedure rather than 
a time-marching method. It is based on the "backward beam equation" previously 
discussed in [5] and [6]. In the case of the continuous backward problem, the un- 
certainty in any of its solutions can be bounded in terms M and 6, using certain 
convexity results. See for example [25] and [11, p. 182]. The error bounds in our dif- 
ference scheme differ from this fundamental uncertainty only by the contribution due to 
truncation. The time-dependent case turns out to be rather interesting in this con- 
nection. 

In Section 2, we develop some preliminary results associated with the backward 
beam equation. In Section 3, the connection between parabolic problems and the 
backward beam equation is explained. There, we write down the difference scheme 
as it applies to second-order parabolic problems in rectangular regions, in two space 
dimensions, with Dirichlet boundary conditions. More complicated problems can 
also be treated. For expository reasons, the discussion in Section 3 is not specifically 
oriented towards the backward problem. The latter is considered in Section 4, where 
the previous results are tied together. Section 4 contains the main results of the paper. 
Finally, in Section 5, we describe the results of a computational experiment on a 
one-dimensional problem whose exact solution is known. More extensive calculations 
on two-dimensional problems, together with a discussion of methods for solving the 
difference equations, will appear in a later report. 
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Because this paper is rather long, we offer the following guide to the reader. 
It is probably best to first skim through Section 2, and then proceed to Section 3. 
The main result of Section 2 is motivated in the remark following Theorem 1. Since 
most of the machinery is developed in the previous sections, the exposition in Section 4 
is unhindered. Thus, Section 4 is the easiest one to read. 

While this work was in progress, we had the pleasure of the advice and encourage- 
ment of many people. We particularly wish to thank R. Hersh, P. D. Lax, S. V. Parter, 
R. D. Richtmyer and Joel Spruck. 

2. The Abstract Backward Beam Equation. In this section, we develop some 
preliminary results relating to an abstract situation, namely, a two-point problem for 
an ordinary differential equation in Hilbert space. The main result of this section, 
Theorem 1 below, will play a major role in Sections 3 and 4. 

Let H be a separable Hilbert space with scalar product (., .) and corresponding 
norm I IH. For each t in the finite interval [0, T], let A(t) be an unbounded linear 
operator, which is closed and with domain DA(t) dense in H. In general, the domain 
of A(t) will vary with t. We assume A(t) to have the following property. 

There exists a real number d independent of t such that [A(t) + X]-' exists and is 
a bounded operator on H whenever Re X > d. Furthermore, 

(2.1) II(A(t) + X) IIHH' - I 
Re 1 > Re X-f3' Re f3 

In the terminology of [13, p. 279], this means that, for each t, A(t) + d is "m- 
accretive." Hence, in particular, 

(2.2) Re(A(t)v, v) > -f(v, v) V v E DA(t). 

Consider now the problem 

(2.3) utt - A(t)u = g(t), 0 < t < T, 

(2.4) U(O) = f1, u(T)= f2 

where f and f2 are given vectors in H, u(t) and g(t) are H-valued functions on [0, 71, 
and g(t) represents a forcing term. The above system was studied by one of us in [5] 
and applied to parabolic problems in [6]. In the above papers, it was assumed that 

(2.5) Re(A(t)v, v) _! O. 

rather than (2.2). Leaving aside the question of existence of solutions in (2.3), we have 
LEMMA 1. Let 7r2/T2 > fi. Then, there is at most one twice continuously dif- 

ferentiable solution of (2.3), (2.4). 
Proof. Let u and v be any two solutions. Put w = u - v. Then, 

(2.6) wt t- A(t)w = O. 0 < t < T. 

(2.7) w(O) = w(T) = 0. 

Hence 
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Re f (Wtt w) dt = Re f (A(t)w, w) dt 
(2.8) 

, d J |W~t)| H dt. 

Integrating by parts, using (2.7), we get 
2 T T rT 

(2.9) - 2 f | W(t)I I1 dt _ f ||wt I2 dt _ 
1 f W(t)I I1 dt, T H H H 

and the result follows. 
Consider now the following finite-difference approximation to the system (2.3), 

(2.4), 

(2.10) ( 2V V - AV= g n = 1, 2, * , N, 

(2 .11 ) v0 f1, VN 1 
=D2 

Here, At = T/(N + 1) is a small increment in the t-variable, An denotes A(nAt), 
and, for each n, Vn is an element of H which presumably will approximate u(n At), if the 
latter exists. Introduce the following notation. With T = (N + I)At, let HN(At) be 
the complex vector space of all N-tuples { v1, v2, , v'} where Vk C H for each 
k = 1, 2, * * , N. Elements of HN will be denoted by capital letters and represented 
as column vectors 

(2.12) V = {v1 V2, v . T. 

Equip HN(At) with the scalar product 
N 

(2.13) (V, W) = iAt E (v, wn) 
n=1 

and write 

(2.14) 1 1 VI |HN (V, V)"2. 

Since H is separable, so is HN. We will also use N X N matrices whose entries are 
linear operators in H. Such matrices represent linear operators in HN. For any such 
matrix Q, we define 

(2.15) IIQIIHN = Sup { I IQ VI IHN }, 
II VI I HN=l 

the supremum being taken over all V in the domain of Q. We can now write the 
system (2.10), (2.11) as a single operator equation in HN namely, 

(2.16) Q V = F- G, 

where V is the vector in (2.12), 

(2.17) F = (1/At2){f1, 0, Be , ,f2}T, 

(2.18) G = {g1 g2, .. gN} T 

and Q is the N X N tridiagonal matrix 
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A1At2) -I c)2] 

(2.19) Q = 1 (2 + A2t2) -Ia 

_\_J -I (2 + ANiAt2) 

Note that in order for V to be a solution of (2.16), it is necessary that the jth com- 
ponent of V belong to DA(jAt) for each j = 1, . , N. Concerning the existence of 
solutions of (2.16) and the "stability" of this difference approximation, we have 

THEOREM 1. Let the family {A(t)} satisfy (2.1) with : > 0 and let T satisfy 

(2.20) Tr2/T2 > F. 

Then, for all sufficiently small At, there is a unique solution of (2.16) for arbitrary 
F, G C HN. Moreover, the following estimate holds: 

T3/2 

IV2I)H [( E)7r2 - T2] I IG IHN + O( IIt){ |l IIH + I If2l H} 
(2.21) [( E f3T 

+Sin Sin 
( 

r-nAt) 
S 

fI in/3112 nAt + Sin: # (1/2T 
ntt 

|f1|H + Sin # 1/2T I |f2||If, 

as At I 0, where E > 0 is sufficiently small such that (1 E 
)7r2 _ fT2 > 0. 

If 1 < 0 in (2.2), there is no restriction on T. With 3 = 0, we have 

(2.22) Iv~IIH? T3/2 (T - nAt) nAt (2.22) 111H< 0 - O JIGIIHI + ( 
T - I f, III + T I11l H 

If 1 < 0, the estimate (2.21) remains valid (and results in hyperbolic sines of 1 11 2t). 
Remark. It is sufficient to prove (2.21). The case 1 < 0 can be handled with 

minor modifications in the proof, such as replacing Cos 0 by Cosh 0, etc. The resulting 
hyperbolic sines imply an exponential decay of the data f1 and f2. This was used 
in [6] to construct an A-stable scheme. The estimate (2.22) follows from (2.21) on 
using L'Hospital's rule. It was obtained in [5] without the use of Chebyshev poly- 
nomials. The present discussion unifies and extends previous results. All of these 
results are quite plausible. Assume for simplicity that g(t) = 0 in (2.3) and that 
A(t) 3 A is independent of t and is selfadjoint with a discrete spectrum. Let the 
eigenvalues of A satisfy 

(2.23) X(A)? -1. 

Expanding in the eigenvectors of A, one can construct the exact solution of (2.3), (2.4). 
This yields the analog of (2.21), (2.22) for the continuous problem. The reader who is 
convinced by this argument may proceed directly to Section 3 without fear of losing 
continuity. 

To prove Theorem 1, we will show that Q- (At) exists and is a bounded operator 
on all of HN. As in [5] and [6], this can be done via the technique of "block Gaussian 
elimination" applied to the tridiagonal matrix Q. We will need the following lemmas. 

LEMMA 2. The Chebyshev polynomials of the second kind on [-1, 1] can be 
generated by means of the recurrence relation 
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(2.24) U.+l(x) = 2xU.(x) - U.-1(x), n > 1, 

where U0(x) = 1, Ul(x) = 2x. 
Putting x = Cos 0, we have 

(2.25) U,(x) = Sin(n + 1)0/Sin 0. 

Proof. See for example [20, p. 297]. 
LEMMA 3. Fix a 0 > 0 sufficiently small such that (N + 1)0 < or. Then 

(2.26) 0 < Sin k0/Sin(k + 1)0 < 2 Cos 0 

for each k = 1, 2, ,N. 
Proof. The inequality is true for 0 = 0. Hence, it remains true in a neighborhood 

of 0 = 0. 
LEMMA 4. Let 7r2/T2 > /3. Let At = T/(N + 1) be sufficiently small, and put 

x = 1 - At2/2. Let Al = [2/At2 + A'] and let rF = -(A1)1. For each n = 2, 
3, ,N, let Abe given by 

(2.27) A. = [2/At2 + An] + r 1/At4, 

where 

(2.28) rn= -(An) 1 , n = 2, 3, ... , N. 

Then, for each n = 1, 2, * * *, N, rn exists and is a bounded operator on H. Moreover, 

(2.29) || rnI H/At ? Un-1(X)/ Un(X), n = 1, 2, ... , N, 

where Un is the nth Chebyshev polynomial of the second kind. 
Proof. From (2.1), we have that, for each n, [2/ At2 + An] is a closed invertible 

operator whose inverse has domain H and 

12 n1 At2 'At2 
(2.30) At ?< 

\At / H =2- O~2 - 

Hence, 

(2.31) 11l1 1/A1t2 ? 1/2x = UO(x)/ U,(x). 

Suppose now that, for some positive integer k < N, rk exists and is a bounded operator 
with domain H, and 

(2.32) |rk I |H/At ? Uk-l(X)/ Uk(X). 

In that case, we have 

(2.33) At4 1 ( I 2+ Ak+l < At \~~At /H - 2x Uk(x) 

Putting Cos 0 = x = 1- _3At2/2, we see that 0 = /1/2 At + O(At2). Hence, if At 
is small enough, 0 satisfies the hypotheses of Lemma 3. Therefore, 

(2.34) Ukl1(x)/2x Uk(x) < 1 . 

We may now employ the well-known lemma on the stability of bounded invertibility 
[13, p. 196] to conclude that rk+l exists and is a bounded operator on H and that 
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1 ~~~~~1/2x 
(2.35) /\ t2 | | ck1 | _ 1 - Uk-l(x)/2x Uk(x) 

Using the recursion formula in Lemma 2, we get, from (2.35), 

(2.36) ||rk+1|HI|/At/ ?< Uk(x)/Uk+l(X). 

Hence, in view of (2.31), the lemma follows by induction. 
LEMMA 5. Let Q be the matrix in (2.19). Let Ak, rk be as in Lemma 4. Let Z = {k } 

be a given vector in HN. Then, X { =Xk} is a solution of QX = Z if and only if 
N N 

x = w, 

(2.37) X + rN-lX /At2 = WN- 

X1 + rFX2/,At2 =W1 

where the { w are defined by 

1 1 
Awl = z 

(2.38) A2W2 = Z2 
+ 

Wl/At2, 

ANWN = ZN ? w' 1/t2 

Proof. See [5, Lemma 4]. Since A-' is defined on all of H, Lemma 5 actually 
proves the existence of a unique solution of QX = Z for any Z E HN. 

LEMMA 6. Let 7r2/T2 > O3, and let At = T/(N + 1) be sufficiently small. Let 
F E HN be defined as in (2.17) and let Y = Q-1F. Then, for each n = 1, 2, *9* , N, 
we have 

IlYnIiH Sin 31/2 (T -_nAt) 
(2.39) Sin 112T |II1|IH 

Sinf31/2 nAt 
+ S= 1/2 | II2I |H + O(At){ I Ifl I IH + I f2 1 H} 

as At I 0. 
Proof. Write F = F1 + F2 where F1 is F with f2 = 0 and F2 is F with f, = 0. 

Then Y = Q- F' + Q- 1F2. Consider first the contribution Q- 'F2. Using Lemma 5 
with' = ZN- 

= 0ZN = f2/At2 we get wl = W N-1 = and 

(2 .40) 1 I w IH_ t If|2l | H 
N (X) 11 I 

on using the estimates in Lemma 4. Inserting this in Eqs. (2.37), we get 

(2.41) 1 Y2n I|H < U(x) I1 f2 IH n = 1, 2, ... , N. 

In terms of 0 = Arc Cos x, we have, from Lemma 2, 
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Sin 3`2 nAt ?O()IfIH 
(2 .42) I IY,2 I 1X- S~in#1B/2 T I If2 I IH + O(At) I |f2 1H1f. 

The estimate for the contribution Q-1F2 follows by symmetry. 
We are now ready to prove Theorem 1. 
Proof of Theorem 1. By Lemma 5, Q-1 exists and is defined on all of HN. Since 

each A' is closed, Q-1 is closed. Hence, Q1 is bounded on using the closed graph 
theorem. We proceed to derive the inequality (2.21). Let M be the tridiagonal matrix 
given by 

(2.43) M = Q - diag{ A', A2, 2 
, AN}. 

Using the method of Lemma 6 in [5], one easily shows that, given any E > 0, there 
exists At sufficiently small so that 

(I- E)72 N k1 k11 A2 
(2.44) ( V, V) < (M V, V) = At j I Iv - v |I/t2, T k=O 

for every V ? HN. In the above sum, v0, vN+ 1 are defined to be zero. If W is in the 
domain of Q, 

N 

(2.45) (Q W. W) = (MW, W) + At (A wI, wn). 
n=1 

Hence, using (2.2) and (2.44), 

(2.46) Re(QW, W) ? [(1 -E)7r/T -3](W, W). 

Choosing E small enough such that (1- E)7r/T2 > /, we get, from (2.46), 

T 2 

(2.47) IIQ|1IIHN (1 2 )lr - 3T2 

Next, let QV = F - G with F, G defined in (2.17), (2.18), and put 

(2.48) W = V -Q-1F, 

so that 

(2.49) QW= QV- F= -G. 

From (2.47), we get 

(2.50) 1 WI IHN < E2 I IGI IH 

Also, using Schwarz's inequality, 

(2.5 1) | | WI IHIV I IQ WI IHIV _- I(Q W. W) I > Re(Q W. W) _ (M W. W) - d| W112HN 

Using (2.49), (2.50), it follows from (2.51) that 

(2.52) (MW, W) ( )r2T2 IGI (M WI W [(1_ E)7r2 - /7] IIIIN. 

Now, for any n with 1 < n ? N, we have 
n-1 

(2.53) wn = At E (wk+l - wk)/At, 
k=O 
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and, using Schwarz's inequality, 

(W~tH ? At n- 
Ik+1 

_ 
WkI IH 

| 
I w"I 

| |< A t E|| W||H 

(2.54) 
k=O At 

N A }1/2{A N jWk+1f_ Wkj}1/2. 
{ k =O }{ k =O 't } 

Since 
N 

(2.55) (MW, W) = 'At E Ilwk+l _ Wk-I2/At2 
k=O 

we get from (2.54) and (2.52), 

7T3/2 

(2.56) IIWII ? 
)r F 

(2.56) 1 IW" I IH [( <_ 
E)72 -_372 II GI IHN. 

Finally, to estimate the components {v } of the solution V of QV =F - G, recall 
the definition of W in (2.48) and use the estimates of Lemma 6 for the components 
of Q-1F. This yields the inequality (2.21) of Theorem 1. 

3. Linear Parabolic Problems and the Backward Beam Equation. To elucidate 
the connection between parabolic problems and the two-point problem of Section 2, 
consider the following simple example. Let R be the strip {(x, t) I 0 < x < 1, t ? 0} 
in the (x, t)-plane and consider the mixed problem for the one-dimensional heat 
equation 

(3.1) Ut = uX, 0 < x < 1, t > 0, 

(3.2) u(0, t) = u(1, t) = 0, t > 0, 

(3.3) u(x, 0) = f1(x), 0 < x < 1, 

where f1(x) is such that the unique solution of (3.1)-(3.3) has sufficiently many deriva- 
tives, bounded on P. If we differentiate (3.1) with respect to time, we get 

(3.4) U t t = UXXXX, 0 < x < 1. 

Since u is zero on the lateral sides of the strip R, it follows from (3.1) that uXX is also 
zero there. Suppose that one knows the exact solution of (3.1)-(3.3) at some positive 
time T. Let u(x, T) = f2(x). Then, the unique solution of (3.1)-(3.3) satisfies the 
following auxiliary system: 

(3.5) Vtt = vXzXX 0 < x < 1, 0 < t < T, 

(3.6) v(0, t) = vXA(0, t) = vxx(1 t) = v(1, t) = 0, t > 0, 

(3.7) v(x, 0) = f1(x)9 

(3.8) v(x, T) = /2(X). 

One may write the above system in the more compact form of a differential equation 
in the Hilbert space L2[0, 1], 

(3.9) v vt - A = 0, 0 < t < T, 

(3.10) v(0)-= 9l V( T) = f2, 
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where now v(t) v(, t) is a Hilbert space valued function on [0, f], and A is the 
unbounded operator in L2[0, 1] corresponding to the spatial part of (3.5) with the 
boundary conditions (3.6). Thus, A is a positive selfadjoint operator in L2; it is 
exactly the square of the operator defined by the spatial part of (3.1) with the boundary 
conditions (3.2). Hence, in this case, 

(3.11) (Avv) > 7r4(v,v) Vv E D(A). 

One may use the energy inequality of Lemma 1, with A = 0, to prove uniqueness in 
(3.5)-(3.8). Consequently, the solution of (3.1)-(3.3) can be obtained by solving 
instead the system (3.5)-(3.8). We call (3.5) the "backward beam equation" because 
of its similarity with the vibrating beam equation v,, = - In contrast to the 
latter, the initial-value problem is not well posed for the backward beam equation. 
What is well posed is the "initial-terminal" problem (3.10). This is easily seen by 
separation of variables which leads to the estimate 

<S inh 7r2 (T - t) Sinh 7r2 t 
(3.12) JV()112 Sinh7r2T 11 1h 12 + Sinh r2T 11f2112. 

Recall that 12 in (3.8) is the exact solution of the heat conduction problem at 
time T. Hence, 12 is necessarily an analytic function. Imagine now solving (3.5)-(3.8) 
with 12 replaced by f2, a function close to 12 in the L2 norm, but not necessarily 
analytic. In that case, the corresponding solution of the backward beam equation 
cannot in general be a solution of the heat conduction problem. However, because 
of (3.12), this solution is close in the L2 norm to the solution of the heat equation 
determined by f,(x). 

One can relate more general linear parabolic problems to the two-point problem 
of Section 2. Consider a parabolic equation, in some bounded domain Q in R', 

(3.13) Ut = -Po(t)u, 0 < t ? T, 

together with certain homogeneous conditions, on the smooth boundary of Q, 

(3.14) B[u] = 0 on (9A. 

Here, Po(t) is a uniformly elliptic operator in the space variables with coefficients 
depending smoothly on x and t. Let P0(t) be the differential operator obtained from 
P0(t) by differentiating the coefficients with respect to t. We then have that any smooth 
solution of (3.13) satisfies 

(3.15) Utt= [P - Pu, 

and 

(3.16) B[u] = 0 on ai. 

However, since p2 is of higher order than P0, one must find extra boundary conditions, 
also satisfied by a smooth solution of (3.13), in order to obtain this solution uniquely 
from (3.15). Suppose that the boundary conditions (3.16) are independent of t. Then 
we may differentiate both sides of (3.16) with respect to t to obtain 

(3.17) B[ut] = 0 on a. 

Using (3.13), this leads to the auxiliary problem 



NUMERICAL COMPUTATION OF PARABOLIC PROBLEMS 247 

(3.18) Utt = [P2-_ o]u xEI9Q.O<t < T, 

(3.19) B[u] = B[Pou] = 0 on A9 i, 0 < t ? T. 

In [6, Section 3], an analysis is carried out on the auxiliary problem (3.18), (3.19) 
generated by a class of selfadjoint problems which are V-parabolic in the sense of 
Lions [14], [19]. The elliptic operator Po(t) in (3.13) together with the boundary 
conditions (3.14) are assumed defined via a symmetric bilinear form 

(3.20) a(t; u, v) = f apq(x, t)Du Dcv dx, 

which is continuous and strongly coercive on a Hilbert space V, lying between the 
Sobolev spaces Hmo(Q) and Hm(Q). Using the Lax-Milgram lemma, the following 
result is proved [6, Theorem 1]: 

THEOREM 2. Consider the parabolic equation 

(3.21) Ut = -P(t)u, 0 < t < T, 

where, for each t, P(t) is the positive selfadjoint operator in L2(Q) defined by the strongly 
coercive bilinear form (3.20). Let the domain of P(t) in L2(Q) be independent of t, and 
let u(t) be a sufficiently smooth solution of (3.21). Then u(t) also satisfies the equation 

(3.22) Utt - A(t)u = 0, 0 < t < T, 

where A(t) is the unbounded operator in L2(Q), defined by the right-hand side of (3.18) 
and the boundary conditions (3.19). Moreover, there exists a constant 3 ? 0 and inde- 
pendent of t, such that A(t) + /3 is an m-accretive operator in L2(Q). 

Remark. In fact, A(t) is selfadjoint in Theorem 2; the need for an additive con- 
stant 3 to render A(t) accretive is due to the extra term Po(t) which may spoil the 
positivity of p2. This extra term is absent in the time independent case. Note that 
the domain of A(t) may vary with t even though P(t) is assumed to have fixed domain. 
See [6, Section 3]. 

Consider now the question of approximating the solution of (3.21) by considering 
instead (3.22). By assumption, u is sufficiently smooth so that Lemma 1 applies. 
Suppose T is such that f3112T < 7r and let f2(x) be the exact solution of (3.21) at time T. 
The difference scheme (2.10), (2.11) now provides a stable "method of lines" where 
only the time variable is discretized while the space variables remain continuous. 
In an actual calculation, the spatial operator must also be approximated. In order to 
maintain the stability inequalities for the fully-discrete scheme, we see from Theorem 
1 that it is sufficient to do the space discretization in such a way that the discrete 
analog of (2.2) remains valid, uniformly in the spatial mesh size Ax as Ax -O 0. In the 
remainder of this section, we show how to do this, using finite-differences, for a 
class of two-dimensional second-order problems. More general problems will be 
considered in a later report using Galerkin methods. 

3.1. The Fully Discrete Scheme for ut = V7 a Vu - cu on a Rectangle. Let Q be 
a rectangle in the (x, y)-plane and consider the parabolic problem 

(3.23) Ut = [a(x, y, t)u,], + [a(x, y, t)u,], - c(x, y, t)u, (x, y) & Q. t > 0, 

(3.24) u(x, y, 0) = f1(x, y), x, y E Q. 

(3.25) u(x, y, t) = 0, (x, y) E 9Ai, t > 0. 
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We assume a, c and f to be smooth functions with 

(3.26) a(x, y, t) _ ao > 0, c(x, y, t) _ 0. 

Let -P0(t) denote the elliptic operator on the right of (3.23) at time t. Introduce a 
rectangular mesh region Q(Ax) over Q with mesh spacing Ax = Ay, and J interior 
mesh points. At each t = nAt, we approximate Po(t) by the usual centered five-point 
difference analog 

(3.27) -(P(x)v)(x, y) = [a (x + 2 + [an(x, Y + 2 V C 

(x, Y) E QWA), 

(3.28) vn(x, y) = 0, (x, y) E aQ(AX), 

where vn, vx denote the forward and backward difference quotients of vn(x, y) over 
f(Ax). 

Denote by Vr the J-component vector formed from vn(x, y) at the interior mesh 
points. Let Pn(Ax) denote the J X J real symmetric matrix corresponding to the 
difference operator (3.27) and the boundary conditions (3.28). We use the notation 

(3.29) (Vn Wn) = (Ax)2 E Vn(X, y) W-(X, Y) 
(Xzi ) EQ (Ax) 

(3~~~~~~ I0 lvnt 1 12 = ( Vn' Vn), (3.30) 2I~I Vv) 
for discrete scalar products and norms of J-vectors. 

Let L(Ax) be the J X J matrix corresponding to the five-point difference analog 
of the negative Laplacian with the boundary conditions (3.28). Then, using (3.26) 
and summation by parts, we have 

(3.31) ao(L Wn Wn) < (PnWn, Wn) < a,(LWn, Wn) + c1 IIWn 112 

for all J-component vectors Wn. Here a, and cl are, respectively, upper bounds for 
a(x, y, t) and c(x, y, t). Since L is positive definite independently of Ax as Ax -* 0, 
we see that pn is positive definite, uniformly in n and in Ax as Ax -> 0. Let 

(3.32) aa/at < a, Oc/3t < -Y. 

Define Jn to be the symmetric matrix obtained from pn by replacing a(x, y, t) and 
c(x, y, t), respectively, by aa/at, ac/at. From (3.32), we get 

(3.33) (spneWn, Wn) < az(LWn' Wn) + _YI W 1 1Fi2 

Next, let f2(x, y) be the exact solution of (3.23)-(3.25) at time T. If we now dif- 
ferentiate with respect to time in (3.23), we get the auxiliary problem 

(3.34) -tt [P=(t)- Ao)]u, (x, y) Ad , 0 < t < T, 

(3.35) u(x, Y, 0) = f1(x, y), u(x, y, T) = f2(x, y), 

(3.36) u = Po(t)u = 0 on A6, ? < t < T. 

This is the problem to be discretized. Define the J X J matrix An(Ax) by 

(3.37) An(Ax) = (pn)2 _ fn. 
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A little thought shows that A'(Ax) is an O(Ax2) difference approximation at t = nAt 
to the spatial operator on the right of (3.34) together with the boundary conditions 
(3.36). Hence, the fully-discrete scheme for the auxiliary problem (3.34)-(3.36) is 
obtained by replacing utt in (3.34) by a centered second-difference quotient, while 
using (3.37) for the spatial operator. Using the natural ordering along lines t = con- 
stant, the fully discrete scheme can be written as 

(3.38) Q(Ax) V = F, 

where Q(Ax) is the matrix (2.19) with A' replaced by An(Ax), V is the "block" vector 

(3.39) V= {V, V2, . . . T 

and F contains the data fl, 12 evaluated on Q(Ax). We now establish the analog of (2.2) 
for An(Ax). In the simple but important case where (3.32) holds with a = Pa = 0, 
we see that 15n is negative semidefinite and hence A'(Ax) is positive definite. More 
generally, 

I (pn Wn, Wn) I -< |na |It>LW Wn) + I lot I1.IK I I vnI 12 (3.40) j-r~ 
I 
l~at I I.(L W, 2 ~~I j~ 

-< (I lat I 1, + I lot I I,/Xo)(L Wn, Wn), 

where X0 > 0 is the infimum of the eigenvalues of L as Ax -* 0. Consequently, if 

(3.41) x = Ilat I ./ao + IIct I /aoXo, 

we have, from (3.31), 
(3 .42) ~~~(pen Wn, Wn) An( W. Wn) 0 . (3.42) X(_~,W (Aww ?o 

Therefore, from (3.37) and (3.42), 

(3.43) ( nAWn, Wn) > IIpn Wni12_ X(PnWn, Wn). 

Using the inequality 

(3.44) E IIP WII - X(Pn Wn, Wn) + X2 2 Wnjj|/4E2 > 0 

we obtain from (3.43), for every 0 < e < 1, 

(3.45) (AnWn, Wn) > (1 - E) IIP WnWnI -x2 II WnI12/4 . 

Hence, using (3.31), 

(3.46) (AnWn , W) > [aoX2(1 - _E) _ X2/4E2] II Wn 1. 

This proves (2.2) for An(Ax) with a constant / depending on 11atII. and Ijctjj. Note 
that A is positive if I a,1I ,O and I Ic,11. are sufficiently large. From Theorem 1, we see 
that this leads to a restriction on T. The reason for this restriction will be seen in the 
next section, where it will be eliminated by suitably transforming the original problem 
(3.23). 

A discussion of methods for solving the difference equations (3.38) will appear in 
another report. In the case of one space dimension, one may use the block Gaussian 
elimination scheme discussed in the proof of Theorem 1. Other methods include 
SLOR, S2LOR, and in the case of time-independent coefficients, the matrix decom- 
position method of [2]. The latter method is the one used in the example of Section 5. 
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4. Parabolic Equations Backwards in Time. Consider the parabolic equation 

(4.1) At = -P(t)u, t > 0, 

where, for each t, P(t) is a positive selfadjoint operator arising from a coercive elliptic 
boundary-value problem, as is the case in Theorem 2 of Section 3. The backward 
problem associated with (4.1) is, given a function f2(x) in L2(Q), to find a solution 
of (4.1) which at time T > 0 takes on the value f2. As is well known, there cannot, 
in general, exist a solution, unless f2 meets certain smoothness requirements. On the 
other hand, if there is a solution, it is unique. For results on backward uniqueness, 
see [17], [18] and [11]. In practice, one cannot measure f2 with sufficient precision to 
determine whether or not f2 meets the necessary requirements for existence. However, 
in a real problem, one will know that f2 is close, in the L2 norm, to a function f2 for 
which a solution exists. Moreover, from physical considerations, one will know a 
bound on the solution at previous times. This bound need not be sharp. Hence, the 
following version of the backward problem makes sense. Given the positive constants 
8, M, T, and given f2(x) in L2(Q), find all solutions of (4.1) on [0, T] which satisfy 

(4.2) 14u(O)112-< M) 

(4.3) jIu(T) - f2112 < 5. 

This is the version of the problem that is considered in this paper. It is clear that if 
there is one solution to this problem, there are, in general, infinitely many. Our 
method will produce a mesh function which is an approximation to all of them simul- 
taneously. Concerning the question of continuous dependence and error bounds in 
the above problem, the following results are known. First, assume P(t) in (4.1) to be 
independent of t. Let u(t) be a solution of (4.1). Then (see [11, p. 183]), log11u(t)l 2 
is a convex function of t and, therefore, for 0 < t < T, 

(4.4) | |U(t)|12 UO12 |< |U(T011| 12 

Hence, if u,(t) and u2(t) are any two solutions of (4.1) on [0, T] satisfying (4.2), (4.3), 
and if e(t) is their difference, we have the following stability estimate: 

(4.5) IE(t)112 _ (2 M) ( / T'(2 5) t / T, 0 < t T. 

In the case where P(t) in (4.1) depends on t, a less generous convexity result, due 
to Agmon and Nirenberg, is known. (See, e.g., [11, p. 182].) Specifically, there exist 
positive constants m and c so that if u = ,(t) is given by 

(4.6) y(t) = (ecT - I)/(et - 1) 

then any smooth solution of (4.1) satisfies 

(4.7) jjuQ) 12 ? emte-mT' Iuu(0)jj(IL1/I jju(T)jIj'l 0 < t < T. 

Suppose for simplicity that one can take m = 0 in (4.7) and consider the resulting 
inequality at t = T/2. Using 

(4.8) .(T/2) eT/ 

we get, from (4.7), the following result for the difference e(t) of any two solutions 
satisfying (4.2), (4.3): 
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(4.9) ~ ~~~~ 1 1(T/2)1 12 -< (2M)1_ e 
c 

T/2(26)e 
S- T/2 

Suppose now that c and T are such that 

(4.10) eT <K 2 

A comparison of (4.9) with (4.5) at t = T/2 suggests the following. In order to know 
the solution of the time-dependent problem with the same certainty as in the time- 
independent case, one must, in general, know the corresponding terminal data with 
much greater accuracy. This seems plausible on the following grounds. Consider 
the simple parabolic problem 

(4.11) ut = [a(x,t)u27]2r, 0<x< 1,t> 0, 

(4.12) u(x, 0) = fl(x), 0 < x < 1, 

(4.13) u(0, t) = u(l, t) = 0, t > 0. 

If the diffusion coefficient a(x, t) in (4.11) is an increasing function of time, it is 
evident that the initial data fj(x) is smoothed out at a higher rate than is the case 
when aa/at < 0. Consequently, more precision in measurement is necessary at time T, 
in order to obtain the same amount of information as in the case when aa/at < 0. 

We have gone into the above discussion in order to set the stage for our method. 
We begin with the simpler case of P independent of t. 

4.1. Selfadjoint Problems with Time-Independent Coefficients. Let P be a positive 
selfadjoint operator in L2(2) and let 

(4.14) ut = -Pug 0 < t < T. 

Let f2(x) be the given approximation to the terminal data at time T. The idea behind 
our method is to solve the backward problem for (4.14) by considering the backward 
beam equation, associated with (4.14), 

(4.15) Wtt = P2W, O < t < T. 

together with the initial-terminal conditions 

(4.16) w(T) = f2, W(O) = 0. 

Note that the unknown initial data for (4.14) has been replaced by zero in the auxiliary 
problem. Consider now the error committed by using the wrong initial data. In 
analyzing this question, we may as well make a direct attack on the difference scheme 
which will be used to solve the auxiliary problem. Moreover, it is convenient and 
sufficient to consider only the "method of lines" of Section 2. All statements below 
will also hold for the fully discrete scheme of Section 3, provided continuous L2 norms 
are replaced by discrete L2 norms and the truncation error O(At2) is replaced by 
O(At2 + Ax2). Thus, we use the scheme (2.10), (2.11), with f' = 0 and gf = 0 to 
approximate (4.15), (4.16). Let e(nAt) be the difference between the solution of the 
difference equations and any of the exact solutions of (4.14) satisyfing (4.2), (4.3). We 
see that { en satisfies the difference equations (2.10), (2.11), with gf representing the 
truncation error, f, the initial data, and f2 the difference between the exact and approx- 
imate terminal data. Since p2 > 0, the estimate (2.22) is valid. Hence, using the given 
bounds (4.2), (4.3), we get, from (2.22), 
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(4.17) IIE(t)112 < M((T - t)/T) + 6(t/T) + o(At2), 0 _ t ? T. 

A little thought shows that the error bound (4.17) is not satisfactory. Indeed, the 
error due to using the wrong initial data decays linearly with time, while the solutions 
of (4.14) decay exponentially with increasing time. Thus, eventually, a time will be 
reached where the error is bigger than the solution itself. On the other hand, (4.17) 
would be a useful bound if somehow the solutions of (4.14) grew exponentially suf- 
ficiently fast, for then the error due to the wrong initial data would eventually be 
imperceptible. 

Thus, rather than deal with (4.14) directly, we set 

(4.18) v = e;tu, 0< t < T, 

in (4.14), where k is a large positive integer chosen so that v grows exponentially with 
time sufficiently fast. Then, v satisfies 

(4.19) vt = -(P-k)v, 0 < t < T, 

and hence the auxiliary problem for v is 

(4.20) w t = (P-k)2w, 0 < t < T, 

(4.21) w(T) = ek Tf2 W(0) = 0. 

The essence of our method is to solve (4.20), (4.21) numerically in order to obtain a 
good approximation for v and hence as good an approximation for u in the original 
problem. Notice that since P is selfadjoint, (P - k)2 is selfadjoint nonnegative, and 
so the estimate (2.22) is still valid. Thus, if we use the scheme (2.10), (2.11) (with 
fl = 0, g' = 0, and t2 replaced by ek f2) to approximate (4.20), (4.21), and if wapp(t) 

is the solution of the difference equations, we find 

(4.22) V{(t) - Wapp(t)112 < M((T - t)/T) + (t/T)e" a + O(At), 

for the difference between wapp(t) and any of the exact solutions of the modified 
backward problem (4.19). Let a(t) be the relative error in the L2 norm, that is, 

(4.23) a(t) = V(t) - Wapp(t)112/1IV(t)112. 

If k is chosen properly in (4.18) and At is sufficiently small, a(t) will be acceptably 
small on some interval 0 < to < t < T. In fact, if the terminal data is known with infinite 
precision, then, by choosing k sufficiently large and At sufficiently small, one can 
make a(t) acceptably small on as large a subinterval of (0, T] as desired. Furthermore, 
since 

(4.24) 0o(t) = e I|v(t)- WIpp(t)| 2 - 
| 

U|(t)I- 12 

we see that 

(4.25) Uajt(t) = e-kt Wapp(t) 

will be an equally good approximation to the solutions of the original backward 
problem for (4.14). 

The fact that the terminal data f2(x) is only known to within 8 results in an optimal 
choice for k, as was observed by P. D. Lax. From (4.22), we have 
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(4.26) IlU(t) - e&tWapp(t)I _ Mekt (T ) + (T- a + O(At2). 

Neglecting the term O(At2) in (4.26), we find that the right-hand side is minimized 
as a function of k by choosing 

(4.27) ko = (1/T) log(M/5). 

Moreover, with this choice of k, (4.26) becomes 

(4.28) | |u(t) -e e2wapp(t)112 < (p)(Tt)/(5)t/T + O(t2), 0 < t < T. 

It is interesting to note that, apart from the truncation error, the bound (4.28) is the 
same as that in (4.5), which followed from the basic convexity result in the time- 
independent case. It is fair to warn the reader that the truncation error term O(At2) 

contains a factor (ko)4 due to replacing vt by a second-difference quotient. Hence, 
in practice, the contribution from truncation will be an appreciable part of the total 
error in this method. For the fully discrete scheme of Section 3, the truncation error 
term on the right of (4.28) becomes O[(ko)4 At2] + O(Ax2); that is, the factor (ko)4 
does not affect the error due to discretizing the space variables. In practice, this means 
that one will often choose At much smaller than Ax in order to minimize the trunca- 
tion error. 

4.2. Selfadjoint Problems with Time-Dependent Coefficients. The time-dependent 
case is more subtle. To develop the reader's insight, it is worthwhile to begin with the 
simple one-dimensional problem 

(4.29) Ut = [a(x, t)u$]$ - c(x, t)u, 0 < x < 1, t > 0, 

(4.30) u(0, t) = u(1, t) = 0, t > 0, 

(4.31) u(x, 0) = f1(x), 0 < x < 1, 

where the coefficients a(x, t), c(x, t) are smooth functions with sufficiently many 
bounded derivatives and 

(4.32) a(x, t) > a0 > 0, c(x, t) _ 0. 

In connection with the backward problem for (4.29), we distinguish three cases. 

Case 1. -9a < - ac < 0. 
3t a t= 

(9a , 3c 
(4.33) Case 2. -?10, -< T 9 Y > ?. at - Ot= 

Case 3. a < a, Asit< T a > ? T ? 

In Case 1, the diffusion coefficient a(x, t) and the dissipative term c(x, t) do not increase 
as t increases. Hence, the smoothing undergone by the initial data f1(x) is no worse 
than would take place in the time-independent problem 

(4.34) Ut = [a(x, O)u]-- - c(x, O)u. 

In Case 2, there is additional smoothing due to the growing dissipative term. In 



254 B. L. BUZBEE AND ALFRED CARASSO 

Case 3, the smoothing is much more severe due to the growing diffusion term. The 
qualitative difference between these three cases is borne out by the error bounds in 
our difference scheme. 

Let us write the initial-boundary problem (4.29)-(4.31) in the form 

(4.35) Ut = -Q(t)u, t > 0, 

(4.36) u(O) = fA, 

where Q(t) is the positive selfadjoint operator in L2[0, 1] defined by 

(4.37) Qo(t)w = -[a(x, t)w.]. + c(x, t)w, 0 < x < 1, 

and the boundary conditions 

(4.38) w(O) = w(1) = 0. 

As in Section 3, we use the notation Q0(t) to denote the formal differential operator 
in (4.37) without the boundary conditions. By d0(t), we mean, as usual, the formal 
differential operator obtained from Qo(t) by differentiating its coefficients with respect 
to t. Thus, if we differentiate (4.35) with respect to t, we obtain the backward beam 
equation 

(4.39) ut = B(t)u, 

where B(t) is the unbounded operator in L2[0, 1] defined by the formal differential 
operator 

(4.40) Bo(t)= - 

together with the boundary conditions 

(4.41) w(O) = Qo(t)wI1=o = w(O) = Qo(t)w I.1 = 0. 

In dealing with the backward problem for (4.35), it will be necessary, as before, 
to consider the modified auxiliary problem obtained by setting 

(4.42) v = e ktU 

in (4.35), for a suitable positive k. This modified problem is 

(4.43) vtt = A(t)v, 

where A(t) is the operator in L2 defined by 

(4.44) AO(t) = (Qo - k)2 _ - O 

together with the boundary conditions (4.41). We now observe the following. If (t) 
is the operator defined by po(t) on the domain of A(t) in (4.43), then 

(4.45) (Q(t)v, v) < 0 Vv E DA, in Case 1, 

(4.46) (Rt)v, v) < y(v, v) Vv E DA, in Case 2. 

In Case 3, because of the growing diffusion coefficient, O(t) is not semibounded from 
above in the L2 norm. In Cases 1 and 2, it follows from (4.45), (4.46) that, for any k, 
we have, in (4.43), 
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(4.47) (A(t)v, v) ? 0 Vv E DA, in Case 1, 

(4.48) (A(t)v, v) _> -(v, v), in Case 2. 

In Case 3, a little thought reveals that A(t) is semibounded from below, but the bound 
depends on k. This is not satisfactory for our purposes. We shall return to Case 3 
later in this discussion. 

Consider now the backward problem in Case 1. Let f2(x) be the given approxima- 
tion to the terminal data at time T for Eq. (4.35). By assumption, the solutions of 
(4.35) satisfy (4.2), (4.3). In (4.42) above, set k = k0 where k0 is defined in (4.27) 
and consider the auxiliary problem, for v, 

(4.49) w,, - A (t) w O. 0, < t < T. 

(4.50) w(T) e koTf2 W(0) = 0. 

Use the difference scheme (2.10), (2.11) to solve (4.49), (4.50). Since A(t) satisfies 
(4.47), the estimate (2.22) is valid. Consequently, so is the estimate (4.28) applied to 
the present problem (4.35). Thus, Case I behaves like the time-independent problem 
(4.34). 

In Case 2, more precise measurements are necessary at time T in order to obtain 
the same amount of information about the solution as in Case 1. Hence, it may be 
anticipated that the estimate (4.28) cannot hold. An indication of the trouble is 
provided by Theorem 1 of Section 2 where we see that Tis restricted by the requirement 
ly1/2T < 7r and we lose uniqueness as -yl2T T 7r. To eliminate this difficulty, consider 
the preliminary transformation 

(4.51) a = exp{ yt2}u 

in (4.29). Then it satisfies 

(4.52) ft = [a(x, t)fi]A - [c(x, t) - ytlfi. 

Thus, (4.51) reduces Case 2 to Case 1. In fact, this transformation can be used for 
general abstract problems. It changes (4.35), (4.36) into the problem 

(4.53) rt = -Q(t)a, t > 0, 

(4.54) a(0)= f=, 

where Q(t) _ Q(t) - yt, satisfies (4.45). Put 

(4.55) = exp{-yT2} a 

and let 

(4.56) ko= (1/T) log(M/a). 

Note that with k0 as in (4.27), we have 

(4.57) ko = ko- yT/2. 

We now solve the auxiliary problem 
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(4.59) w(T) = et T/2eko T12 ek T12 W(0) = 0, 

with A" defined in terms of Q(t) and kr,. 
From (4.28), (4.51) and (4.57), we get 

(4.60) | |u(t) Wa-0(t) exp {- [k+ 
y - 

T)]} 2 

< M(T-t/Tst/T exp {t(T t)} + O(At2), 

where u(t) is any solution of (4.35) satisfying (4.2) and (4.3). From (4.60), we may 
observe the effect of the extra smoothing of Case 2. The uncertainty in the solutions has 
been increased by a factor exp { yt(T - t)/2} over that in Case 1, where y is the upper 
bound on ac/at. 

We now remark that, in both Cases 1 and 2, the uncertainty is less than would 
have been predicted by the Agmon-Nirenberg convexity result (4.7). This is because 
the latter is of general validity. As a matter of fact, the error bound obtained via (4.7) 
is what our method yields for Case 3, the case of most severe smoothing of the initial 
data. To analyze Case 3, we will reduce it to Case 1 by stretching the time variable. 
This stretching transformation was shown to us by Joel Spruck. 

In view of the transformation (4.51), it is sufficient to consider the case where 

(4.61) aa/at < a, o > 0, ac/at < 0. 

With ao as in (4.32), let qp(s) be the function 

(4.62) so(s) _ log(l +-s), s _ 0. 

Then, 

(4.63) (o'(s) = ao/(ao + as) > 0, 

(4.64) (P"(s) = -aoa/(ao + aS)2 < 0. 

We shall put t = p(s) in (4.29). Let 

(4.65) p(xqs) = u(xp (s)), s 2 0 

(4.66) b(x, s) = a(x, so(s))<p'(s), 

(4.67) d(x, s) = c(x, p(s))p'(s). 

Then, p(x, s) satisfies 

(4.68) Pis [b(x, s)p.]. - d(x, s)p, 0 < x < 1, s > 0, 

(4.69) A~X 0)-U(X, 0) =, Wlx, 0 < x < 1, 

(4.70) p(O, s) = p(, s) = 0, s > 0. 

From (4.32) and (4.61)Y(4.64) we have 
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Therefore, the transformation (4.62) reduces Case 3 to Case 1. Consider now the 
backward problem for the transformed equation (4.68). Let f2(x) be the given approx- 
imation to the data at time T for (4.29). Then, f2(x) becomes terminal data for (4.68) 
at time S where 

(4.73) S = (ao/a)[ea T/ao - 1]. 

Putting 

(4.74) ko (1/S) log(M/6), 

we solve the auxiliary problem associated with (4.68) on [0, S]; that is, 

(4.75) q..- A(s)q= 0, 0 < s < S, 

(4.76) q(O) = 0, q(S) = ekoS2, 

where A(s) is constructed in the usual way, from ko and the right-hand side of (4.68). 
If qapp(s) is the solution of the difference equations for (4.75), (4.76), it follows as in 
Case 1 that 

(4.77) 1p(s) - qapp(s)e-k08 12 _ M(S-8)/S 8/S + O(AS2). 

It is instructive to transform back to the unstretched time t. Let 

(4.78) -l(t) = (ao/a)(eal/ao 1) 

and define 

(4.79) Wapp(t) = qavp((o1(t)), 0 < t < T. 

Put 

(4.80) A.(t) = (ea/ao - 1)/(eat/ao - 1) 

Let u(t) be any solution of (4.35) satisfying (4.2) and (4.3). From (4.71), (4.79), (4.80), 
we then have 

(4.81) J1u(t) - e*' "(w)app(t)I12 _ M(A-l)/IAl/ + O(tAt2), 

where ko is defined in (4.74). Thus, the uncertainty in (4.81) is that obtainedfrom (4.7) 
with m = O and c = a/ao. 

The above discussion of the one-dimensional problem can be generalized. To begin 
with, the distinction between the three cases and the transformations (4.51) and 
(4.65)-(4.67) apply equally well to the problem in more than one space dimension 

(4.82) Ut = V7' a(x, t)Vu -c(x, t)u, x G Q, t > 0, 

(4.83) u 0 on c , 

where a(x, t) _ a0 > 0 and c(x, t) > 0. In fact, all of the ideas remain valid for higher- 
order parabolic problems which can be built up from (4.82), (4.83) such as 

(4.84) Ut = (-1)8-1Q"(t)U, t > 0, 

where s is a positive integer and where Q(t) is the operator corresponding to the 
spatial part of (4.82) and the boundary conditions (4.83). Moreover, the fully discrete 
scheme of Section 3 can be generalized to apply to (4.84) while preserving all the 
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necessary inequalities. In practice, because of the resulting algebraic problem, one 
will seldom be able to compute problems in more than two space dimensions in general 
domains, and with time-dependent coefficients. 

To complete the discussion of the time-dependent case, we now show how the 
preceding ideas can be generalized so as to apply to the abstract "V-parabolic" 
problems of Section 3. Because of the level of generality, the discussion will now have 
to be restricted to the semidiscrete "method of lines" of Section 2. 

Let V be a closed subspace of the Sobolev space Hm(Q) with the property that 

(4.85) Ho(Q) C V C Hm(Q) 

and let IC )Im denote the norm on Hm(Q). For each t > 0, let a(t; u, v) be the sym- 
metric bilinear form on V given by 

(4.86) a(t; u, v) = E asa(x, t)D'uD~v dx, 
I VI . 1a lsm 

where the a., depend smoothly on x and t and 

(4.87) a., = 1aid 

We assume a(t; u, v) to be strongly coercive on V, uniformly in t; this means that there 
exists a positive constant w, independent of t, such that 

(4.88) a(t;v,v) _ w I vII' Vv E V. 

Let dp2, denote aa7,j/at and define d(t; u, v) to be the bilinear form on V obtained 
from (4.86) when a,,, is replaced by dip. The form d(t; u, v) will play an important 
role in the subsequent discussion. Both a(t; u, v) and d(t; u, v) are continuous on 
V X V. Thus, there exist constants K1 > 0 and K2 > 0 such that 

(4.89) la(t; u,v)l _ K, IJulim IIV.Im Vuv E V, 

(4.90) Ia(t; u,v)I < K2 IIuIlm IIvIm Vu,v C V. 

The form (4.86) generates the selfadjoint parabolic boundary problem 

(4.91) ut = -Po(t)u = - 2 (-1)1v1D"(aQ(x, t)Dau), x Q2, t > 0. 
IVI , I 1:5 m 

(4.92) B[u] = O, x E a2, t > O. 

We assume (4.86) to be such that the boundary conditions (4.92) are independent 
of t. Hence, under sufficient smoothness, 

(4.93) a B[u] = B[ut] = B[Pou] = 0, x E a t, t _ O. 

The backward beam equation associated with (4.91), (4.92) is 

(4.94) Utt = [PO- 10]u, x E Q, t > 0, 

(4.95) B[u] = B[Pou] = 0, x CE au, t > 0. 

According to Theorem 2, this is of the form t t - A(t)u = 0, with A(t) quasi m- 
accretive in L2(Q). Corresponding to the three cases in problem (4.29), we now make 
the following definition: 



NUMERICAL COMPUTATION OF PARABOLIC PROBLEMS 259 

Definition. The parabolic boundary problem (4.91), (4.92) is minimal-smoothing 
on [0, 1] if 

(4.96) d(t; v, v) < 0 Vv E V, 0 < t < T. 

It is strongly-smoothing if 

(4.97) d(t;v,v) -< y IjVjjI, V E V, 0 < t < T, 

where (. H is the norm on L2(Q) and y > 0. If, for some positive a, we have 

(4.98) d(t; v, v) < a IIVjII' V e V, 0 < t < T. 

the problem (4.91), (4.92) is said to be maximal-smoothing on [0, T1. 
We may write (4.94), (4.95) as 

(4.99) Utt = [P2(t) - (t)]U 

where P2(t) is the positive selfadjoint operator in L2( 2) defined by P2(t) and the 
boundary conditions (4.95), and P(t) is the symmetric operator in L2(Q) corresponding 
to P0(t) restricted to the domain of P2(t). Since 

(4.100) (A(t)v, v) = a(t; v, v) Vv E Dp(t), 

the inequalities (4.96)-(4.98) can be translated in terms of the operator P. 
With the above machinery, it is now easy to discuss the backward problem for 

(4.91), (4.92). Consider first the minimally-smoothing case. In this case, we choose 
k0 as in (4.27) and use the difference scheme (2.10), (2.11) to solve the auxiliary 
problem 

(4.101) wt = [(P - ko)2 - 15]w, 0 < t < T. 

(4.102) w(0) = 0, w(T) = e koT2, 

where f2 is the given approximation to the terminal data. This leads to the estimate 
(4.28) as in the case of time-independent coefficients. In the strongly-smoothing case, 
we have 

(4.103) (13(t)v,v) < y(v,v) Vv E Dp(t) 

Applying the preliminary transformation (4.51) to (4.91), we may reduce the strongly 
smoothing case to the minimal case. With ko as in (4.56), this leads to the estimate 
(4.60). In the maximal-smoothing case, we first observe that the idea behind the 
stretching transformation (4.62) can be abstracted to the present problem. With 
X and a the constants in (4.88) and (4.98), define the function 

(4.104) P(s) = (X/a) log(l + as/X), s > 0. 

Then, P'(s) > 0, P"(s) < 0 and 

(4.105) Xd'" + a( 6')2 = 0. 

From the bilinear form a(t; u, v) of (4.86), we construct the form b(s; u, v) where 

b(s; u, v) = a(it(s); u, v)*/'(s), s > 0, 

(4.106) E |m bq(X, s)DQuD~v dx, 
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with 

(4.107) bj(x, s) = aj(x, VI(s))VI/(s), s _ 0. 

Let b'(s; u, v) be the symmetric bilinear form on V obtained from (4.106) by replacing 
bpQ(x, s) with abpQ/1s. We then have 

(4.108) b'(s; u, v) = '"a(it(s); u, v) + (it")2d(i5t(s); U, v). 

Hence, using (4.88), (4.98) and (4.104), 

(4.109) b'(s; v, v) I 
[a(IV1)1 + c2t'] jjvjj2 = 0 VV ? V. 

We now put t = p(s) in (4.91). Let 

(4.110) t(x, s) = u(x, Ct'(s)), x ? s ?> 0. 

Then t satisfies the parabolic boundary problem 

(4.111) t8 = -Go(s)t, x E Q. s > 0, 

(4.112) B[f] = 0, x E 12, s > 0, 

where Go(s) = i/'(s)Po(VI(s)). This is the problem generated by b(s; u, v). Since 
b'(s; v, v) < 0, we have the minimal-smoothing case for the transformed problem 
(4.111), (4.112). Proceeding as in the discussion of the one-dimensional problem (4.35), 
we get an estimate like (4.81) for the maximal smoothing case with ao replaced by w 
in (4.80). 

5. An Example. Consider the one-dimensional problem 

(5.1) Ut = useI 0 < x < 7r, t > 0, 

(5.2) u(0, t) = u(7r, t) = 0, t _ 0, 

(5.3) u(x, 0) = e-10 Sin x + Sin 2x, 0 < x < 7r. 

This problem has the exact solution 

(5.4) u(x, t) = e (1O+t) Sin x + e-4t Sin 2x. 

The particular initial data (5.3) was selected so as to generate a solution whose 
character changes with time. From (5.4), we see that, at t = 0, the second harmonic 
dominates the solution with an amplitude of about IO' times that of the first harmonic. 
At t = 10/3, the two amplitudes are equal, and thereafter the first harmonic dominates. 
At T = 5, the amplitude of the first harmonic is about 150 times that of the second. 
To illustrate our theory, we have computed this problem backwards in time, given 
the exact solution at T = 5. Thus, the only error in the terminal data is that due 
to round-off in the machine (see below). To get an idea of how long a time span is 
physically represented by choosing T = 5, we mention that in the numerical computa- 
tion of forward parabolic problems via marching procedures, a "long time" is often 
taken to be about the half-life of the transient term [26]. In the above example, 
computing backwards from T = 5 to near t = 0 amounts to resurrecting the second 
harmonic after it has decayed by some eight or nine orders of magnitude! This is 
because at the early times, the solution consists almost entirely of the second harmonic. 
Needless to say, such long time backward calculations are hardly possible in physical 
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problems where the terminal data are obtained from measurements with low accuracy. 
The point of the experiment is to illustrate the possibility of going from the smooth 
to the less smooth. 

Following the development of Section 4.1, we are led to the auxiliary problem 

(5.5) wt = W + 2kw + k2w, 0 < x <r,0 < t < 5, 

(5.6) W(0, t) = WXX(0, t) = w(r, t) = w,,(r, t) = 0, 0 _ t _ 5, 

(5.7) w(x, 0) = 0, w(x, 5) = e5 kf2(x), 0 < x < 7r. 

Here k is a positive number to be determined from (4.27). The computations were 
carried out in single-precision on a CDC 6600 at the Los Alamos Scientific Labora- 
tories. Hence, f2(x) in (5.7) differs from (5.4) at t = 5 by an amount 8, where 

(5.8) d^ e-15 X 10-14 l-1020. 

Using M 1, we get ko = 9.2. 
To approximate the spatial operator in (5.5) and the boundary conditions (5.6), 

we used the scheme of Section 3.1. In the present one-dimensional time-independent 
case, this reduces to the pentadiagonal J X J matrix (H - kI)2, where I is the identity 
and H is the J X J tridiagonal matrix 

(5.9) H - 512-1, 2,-1} Ax J+y1 

Using the natural ordering along lines t = constant, the fully discrete scheme for 
(5.5)-(5.7) may be written as a block tridiagonal system of linear equations. The 
matrix of this system is precisely the matrix Q in (2.19) with the An's replaced by 
(H - kI)2. We chose At = 1/50 and Ax = 7r/40. The resulting system of order 
9,711 was solved using the method of matrix decomposition described in [2]. Time 
of computation on the CDC 6600 was 4.5 seconds, even though the code incorporated 
provisions for inhomogeneous terms in (5.1)-(5.3). 

Equation (4.28) bounds the L2 norm of the absolute error. However, since the 
solutions of (5.1) decay exponentially, it is the relative error which is significant. 
In our example, one can estimate the quantity o(t) of (4.24) by using (4.28) and the 
known behavior of the solution (5.4). Making provision for truncation error and 
using M = 1, 8 = 10-20, we conclude that a relative error of 10 percent or less should 
be attainable as far back as 90 percent of the way from T = 5. Clearly, in view of the 
fundamental uncertainty (4.17), one cannot expect good results further back in time. 

Two computations of (5.5)-(5.7) were performed, one with k = ko = 9.2 and the 
other with k = 12. Only the computation with k = 12 is displayed. In Table 1, the 
function o(t) of (4.24) is tabulated. We see that a is less than or equal to 10 percent 
as far as 94 percent of the way back from T = 5, and less than 3 percent as far as 
89 percent of the way back. Since all our estimates are in terms of L2 norms, one may 
ask whether the pointwise structure of the solutions is actually being computed. 
Figure 1 displays the computed evolution backwards in time of the terminal data, 
together with the absolute error (E). The exact solution (5.4), can be obtained by 
adding the curve (E) to the curve (*). We have good agreement up to t = .3. At 
t = .02, the relative error is about 73 percent. It is interesting, but very likely fortuitous, 
that the qualitative behavior of the solution is still preserved at t = .02. 
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TABLE 1 

T NORM(RE) T NORM(RE) T NORM(RE) T NORM(RE) T NORM(RE) 

0.02 7.28E- 01 1.02 3.62E- 03 2.02 1.60E- 03 3.02 1.59E- 02 4.02 2.12E- 02 
0.04 5.35E- 01 1.04 3.32E- 03 2.04 1.65E- 03 3.04 1.65E- 02 4.04 2.08E- 02 
0.06 4.OOE- 01 1.06 3.06E- 03 2.06 1.71 E- 03 3.06 1.72E- 02 4.06 2.03E- 02 
0.08 3.09E- 01 1.08 2.82E- 03 2.08 1.77E- 03 3.08 1.79E- 02 4.08 1.99E- 02 
0.10 2.48E- 01 1.10 2.61E- 03 2.10 1.84E- 03 3.10 1.86E- 02 4.10 1.95E- 02 
0.12 2.09E- 01 1.12 2.42E- 03 2.12 1.91E- 03 3.12 1.93E- 02 4.12 1.91E- 02 
0.14 1.84E- 01 1.14 2.25E- 03 2.14 1.99E- 03 3.14 2.OOE- 02 4.14 1.86E- 02 
0.16 1.66E- 01 1.16 2.10E- 03 2.16 2.07E- 03 3.16 2.07E- 02 4.16 1.82E- 02 
0.18 1.53E- 01 1.18 1.97E- 03 2.18 2.16E- 03 3.18 2.14E- 02 4.18 1.78E- 02 
0.20 1.43E- 01 1.20 1.85E- 03 2.20 2.26E- 03 3.20 2.20E- 02 4.20 1.73E- 02 
0.22 1.33E- 01 1.22 1.75E- 03 2.22 2.36E- 03 3.22 2.27E- 02 4.22 1.69E- 02 
0.24 1.25E- 01 1.24 1.67E- 03 2.24 2.47E- 03 3.24 2.33E- 02 4.24 1.65E- 02 
0.26 1.16E- 01 1.26 1.59E- 03 2.26 2.58E- 03 3.26 2.39E- 02 4.26 1.60E- 02 
0.28 1.08E- 01 1.28 1.52E- 03 2.28 2.70E- 03 3.28 2.45E- 02 4.28 1.56E- 02 
0.30 1.OOE- 01 1.30 1.47E- 03 2.30 2.83E- 03 3.30 2.50E- 02 4.30 1.52E- 02 
0.32 9.25E- 02 1.32 1.42E- 03 2.32 2.97E- 03 3.32 2.55E- 02 4.32 1.47E- 02 
0.34 8.53E- 02 1.34 1.38E- 03 2.34 3.11 E- 03 3.34 2.60E- 02 4.34 1.43E- 02 
0.36 7.85E- 02 1.36 1.34E- 03 2.36 3.26E- 03 3.36 2.64E- 02 4.36 1.39E- 02 
0.38 7.21 E- 02 1.38 1.31 E- 03 2.38 3.42E- 03 3.38 2.68E- 02 4.38 1.34E- 02 
0.40 6.62E- 02 1.40 1.28E- 03 2.40 3.59E- 03 3.40 2.71 E- 02 4.40 1.30E- 02 
0.42 6.06E- 02 1.42 1.26E- 03 2.42 3.77E- 03 3.42 2.74E- 02 4.42 1.26E- 02 
0.44 5.54E- 02 1.44 1.24E- 03 2.44 3.96E- 03 3.44 2.77E- 02 4.44. 1.21 E- 02 
0.46 5.06E- 02 1.46 1.22E- 03 2.46 4.16E- 03 3.46 2.79E- 02 4.46 1.17E- 02 
0.48 4.62E- 02 1.48 1.21E- 03 2.48 4.38E- 03 3.48 2.80E- 02 4.48 1.13E- 02 
0.50 4.21 E- 02 1.50 1.20E- 03 2.50 4.60E- 03 3.50 2.81 E- 02 4.50 1.08E. 02 
0.52 3.84E- 02 1.52 1.19E- 03 2.52 4.83E- 03 3.52 2.81E- 02 4.52 1.04E- 02 
0.54 3.50E- 02 1.54 1.18E- 03 2.54 5.08E- 03 3.54 2.82E- 02 4.54 9.96E- 03 
0.56 3.18E- 02 1.56 1.18E- 03 2.56 5.34E- 03 3.56 2.81 E- 02 4.56 9.53E- 03 
0.58 2.89E- 02 1.58 1.18E- 03 2.58 5.61 E- 03 3.58 2.80E- 02 4.58 9.09E- 03 
0.60 2.63E- 02 1.60 1.17E- 03 2.60 5.90E- 03 3.60 2.79E- 02 4.60 8.66E- 03 
0.62 2.39E- 02 1.62 1.17E- 03 2.62 6.20E- 03 3.62 2.78E- 02 4.62 8.22E' 03 
0.64 2.17E- 02 1.64 1.18E- 03 2.64 6.51 E- 03 3.64 2.76E- 02 4.64 7.79E- 03 
0.66 1.97E- 02 1.66 1.18E- 03 2.66 6.84E- 03 3.66 2.74E- 02 4.66 7.35E- 03 
0.68 1.79E- 02 1.68 1.18E- 03 2.68 7.19E- 03 3.68 2.72E- 02 4.68 6.92E- 03 
0.70 1.63E- 02 1.70 1.19E- 03 2.70 7.55E- 03 3.70 2.70E- 02 4.70 6.49E- 03 
0.72 1.48E- 02 1.72 1.20E- 03 2.72 7.93E- 03 3.72 2.67E- 02 4.72 6.05E- 03 
0.74 1.34E- 02 1.74 1.21 E- 03 2.74 8.33E- 03 3.74 2.64E- 02 4.74 5.62E- 03 
0.76 1.22E- 02 1.76 1.22E- 03 2.76 8.75E- 03 3.76 2.61 E- 02 4.76 5.19E- 03 
0.78 1.11E- 02 1.78 1.23E- 03 2.78 9.18E- 03 3.78 2.58E- 02 4.78 4.75E- 03 
0.80 1.01 E- 02 1.80 1.25E- 03 2.80 9.63E- 03 3.80 2.54E- 02 4.80 4.32E- 03 
0.82 9.14E- 03 1.82 1.26E- 03 2.82 1.01 E- 02 3.82 2.51 E- 02 4.82 3.89E- 03 
0.84 8.31 E- 03 1.84 1.28E- 03 2.84 1.06E- 02 3.84 2.47E- 02 4.84 3.45E- 03 
0.86 7.55E- 03 1.86 1.31 E- 03 2.86 1.11 E- 02 3.86 2;44E- 02 4.86 3.02E- 03 
0.88 6.87E- 03 1.88 1.33E- 03 2.88 1.16E- 02 3.88 2.40E- 02 4.88 2.59E- 03 
0.90 6.25E- 03 1.90 1.36E- 03 2.90 1.22E- 02 3.90 2.36E- 02 4.90 2.16E- 03 
0.92 5.69E- 03 1.92 1.39E- 03 2.92 1.28E- 02 3.92 2.32E- 02 4.92 1.73E- 03 
0.94 5.19E- 03 1.94 1.43E- 03 2.94 1.33E- 02 3.94 2.28E- 02 4.94 1.29E- 03 
0.96 4.73E- 03 1.96 1.46E- 03 2.96 1.40E- 02 3.96 2.24E- 02 4.96 8.62E- 04 
0.98 4.32E- 03 1.98 1.50E- 03 2.98 1.46E- 02 3.98 2.20E- 02 4.98 4.31 E- 04 
1.00 3.95E- 03 2.00 1.55E- 03 3.00 1.52E- 02 4.00 2.16E- 02 5.00 3.97E- 13 

Relative error in the L2 norm as a function of time. 



NUMERICAL COMPUTATION OF PARABOLIC PROBLEMS 263 

,.E s F. AWA S S ! !j 
______ ______ - I?~~~~~~~~~~~~~~~~a ld - 

L I ._. 

__t~l -|| ! 9 - t I S9Q 0 9 IIII 4 .0 a 

_ T.5 _ 13.0. 

*L I-fff tvtt~EKfT~~ I I'...l. lt H- 

T-- _| . .T2 5 H| | |+ 0 

r.*-l 1 1 I--F FIGUR 1e 1' 1 1 1 1 

I I 
I 

- I -I 1 1 1 1 1 1 1 1 

-= ---11-- --1 

T~~~~~ --1- - -1 - 

f -r l l 1 1~~t . 0 .1 

FIGURE 1 

Backward evolution of slightly perturbed first harmonic in the presence of round-off error. 
(*) denotes computed solution, (E) absolute error. 
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The computation with k0 = 9.2 produced similar results. Although the interval 
of 10 percent relative error was essentially the same as with k = 12, the relative errors 
were generally larger. The reason for this is the following. With k0 = 9.2, the matrix 
(H - k01)2 is nearly singular, since 9 is an eigenvalue of the spatial operator in 
(5.1)-(5.2). From Theorem 1 of Section 2, with f3 = 0, we see that we have linear 
decay of the data, and hence of the errors. On the other hand, k = 12 lies midway 
between the third and fourth eigenvalues of the differential operator, and this leads 
to a positive-definite matrix (H - kI)2. The resulting exponential decay of the errors, 
due to the hyperbolic sines, accounts for the better results. 
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